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Abstract - ‘Fhih tutorlul presents wh overview of th e sppli celi on of
wilificiel newru L ne twor k (ANN) 16 power syst exo secinity es sese 1noent
(SA) wnd secunn ity enhenc cment (SE). The wmein objective of this
tutordul ds: (1) to ddentify th t type of secority problans best sulted
for ANN upplicution and (ii) to give & procedure for deslguing ANNa
for SA wnd SE, specific wlly,  how to c¢hioose 2 good A N N5 the juputs,
th ¢ traindng sct snd Jiow Lo ev sluxte th ¢ ANN perfo now bee. Sinceth e
SA wstessment problan dnvolves clussification, pstiern recoguition,
prediction, estimation, #n @ fust solution, it fa well suiled for ANN
spplication.  Th ¢ mujority of ANN a1 chite clur es used in SA und SE
are th ¢ wulli-layered perception , th ¢ Kohonen wnd the Hoplicddd
networks. 1 he problem of selecling & good ANNfor SA snd S1° s
sitn fur to the problan of scdecting 8 set ol good sccurity indice » or
approrituate  systemn  performunce (ASF) weodels, | . C. the
tcpresentutionproblemdn Approximution “1 heory,  Although the key
issue in the selec tion of @ good i odel is that it be
computstionully fust, this fs 4 1 on-d ssue wh e uslng Ah’h’s On th ¢
other hun @ the scc v rucy of the predic tion of the security Jevel is of
patsimount importunce since expl jclt expression of the nput-output
1oasp of the ANN is not uv al luble fo 1 ev w) ve tio n end 11, sdditio nitis
uduptive To help wddiess this dssue, this tutorisl also gives @
1wacthod fo r evalusting the ANN deslg a0 b tens of fts ucc ur & ¢y In
predicting the cotredt Jevel of security,  Varlous exein ples wre glven
1o give the teador sn dusights iuto the specdfics of problems peluting
to the design of ANN for SA und SE. An extensive literuture list
pomnts the reador to more det wiled infor wation.

1. INFRODUCTION

Powersys temsecunity assessment is the process of detenmining, whether
the power system s in a secne o1 alert (inscenre) state, whicre sectne
state implhies that the load is satisficd and no limit violstion s will ocew
uncier present operating, conditions and in the presenice of uniforeseen
contingencies (i €., outages of one o1 several lines, tranisfor imers ot
generators) [Balu et al |, 1992]. The aleit (o einergency) state implics
that cither some hinits are violated and/or the Joad demand cannot be met
and conrective actions must be tak en in order to bring the power sy steim
back to the secure state The key issues in secunty assessment are: (1)
fusCidentification of the set of insccure contingend its; and (i) theh
eviluation in tenms of the severity of theirimpact on the power systen,
operation (1.¢., contingency ranking).  The solution Of these probleins
involves prediction, pattern recognition, classification and fast solotion,
whichwe tasks wellsotedforthe ANN techuology.

( dvesthe past few years, a nutnber of approaches using arificial newal
networks (ANNS) have been proposed as alternative methods for
secutity a ss essmoentin power syster n operations {Mori and Psuzuki,
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1990, FI-Sharkawi ef al., 1992, CIGRE TFE 38.06.06, 1993, Genmond
and Nicbur, 1993; IEEE 'TE, 1995; Dillon and Nicbur (ed.), 1995]. In
pencia)l, ANN maethodology should be applied in areas where
conventional technigues have not achieved the desired speed and
aecoracy. One such ares is the fast paticon recognition and classification
of the system seconty status ia the area of contingency analysis. ‘This
application is possible beenuse an ANN can be trained to acquire
kuowledge of the complor relationships between the initial systen state
and the post-contingency stale in a power systemn through the use of an
iterative mathematical alponthm. Once properly trained, a ANN can
intcapalate patterns vsing s linited amount of input data [Fischl and
Chow, 1993]. Since ANNs are quick inesponse time and can be casily
adapted they become exeddlent candidates for on-line application in arcas
where inadeguate input data and computational buden might have
rendered other approaches napractical for implementation.

There o-¢ a number of problems with using the ANN (o assess the power
system secunity. Yor a muolti-Tnyered pesceplron (MIP), there is no exact
critenion for the mnmber of hidden layers as well as the number of
newrons per hidden layer. Too many neurons can Jead (o memonization
of the baining data with the danger of losing its ability to generalize and
predict Another problem as the selection of the training set.
Considcring that ANNx &e good ininterpolation but not in extrapolation,
taining sets have to be rgpmesentative of the different states of the powet
systen This means that they need to comprise of the complete pattern
space of the secwe and insecine power system operation. This means a
large teining set, which implics a long time for training Furthermorse,
there is the problem with data sensitivity, as there i no fixed rale as to
what typx of input datas would provide the best results in the output.

Finally, most ANN desipn procedures (supervised or unsupervised) are
based on a procedure which optimizes the ANN weighls with respect o
the appioximation ennor of newon output and target output, usually the
security state, (c.p. the back propagation (BP) mcthod minimizes a
mean-square-cnor). However ARN design procedmes should focus on
the i mization of the sccwacy of the secunity puediction especially in
the cnitica] and ionsecuie arcas of the power system operating space by
taking the probubibity snd sevenity of the secwity states into account,

Table 1 gives & compuison between the conventional and neural
compubation of power system secunity. Tn the next section we shall
addregs the assues presented in this table, concerning the design of the
ANN. Before, doing this we give more details relating the items in the
Conven-ional conygntaiion colutin of Table 1.

Table I Companison of Conveational and Neural Conpatation of Fovea Sysicm Secanity

Task Conventional computation
Sccurlty Assessment

& Enhancemnent (APS) model & Algorithn

Input data Data from State Estimator;

Kunowledge acquisition Programming,

Kuowledpe vetr jeval Scquential computabon

Computation
maode] predicts Hmit violation o

Stored param cters
constant

Selection of Approximate Systen Performance

Network daty; Injections; Contingency Tist &
Operating constraints (Numerical fonn only)

High-puecision atthimetic to detenmnine if ASP

ASE model parameters are estinnated & hield

Newral network computation

Selection of Neoral Network:
Architectine & processing 1ale

Processed injection & network data to reduce the input data
set plus operator dota (Both numerical & perceptual data)

Weight determination, ic., taining set & learuing rale

Fast puralle] computation

Fow-precision, nonlinear mapping to predict the level of
msecnity; o s low precision contingency filter

Values of weights are adapted via a learning 1ale




2. WHA'I' IS SECURTTY ASSESSMENT AND ENHANCEMUENT?

‘A reliable power systen should be operated so that it can withstand the
outage of any systel cornponent og a sct of cotmponents. o this end,
most power systems are operated on 1r fist contingency basis. A
contingency s a set of hypothetical network equipment owtages o1
breaker operation such as the loss of a gener ator, tiansmission line, &
transformer ora combination Of such.  In contingency analysis, user-
specified outape s tire examined (o assess the effect of contingencies and
dert the systern operators to the potentially bannfol ones that violate the
equipment operating liits and/or drive the system to voltape and phase
angle instability or excessive ficquency devistions. The most common
limit violations includes transmission line and/or transfouner thenal
ove rloads, ab noral voltapes and excessive voltage deviations. Given
this infotmation, asystem operatog can judge the relative severity of each
continpency and decide if preventive actions should be initiated to
hiitipate the potential problems. “Ihe best contr ol strategy fur moving, the
system fropn an insecure state into secu e states is what is called securnity
cohancement (81).

The traditional contingency selection and ranking, a{»pmach is to use
sote type of aitomatic contingency selection (ACS) or contingency
screening (AS) method. In cither case, the key to agood A('S o AS
method is that it is fast in computation and accurate in correctly
identifying the harmful contingencies, that is quickly reducing the
contingency list by eliminating all the irrelevaut (or harmless)
contingencics. Morcaver, it must rank the contingency in relative
severity and if possible predict the post-contingent line flows, voltages,
fiequency and system stability.  To achieve this, various algorithmic
methods ha ve been proposed, each of which uses an approximate systen:
performance (AS]') model which are computationally efficient to eithe:
identify the insecure contingencies and/or estimale the enhancement
strategy [Lalu ef al 1992, El- Sha kawi ef ol ,1997). The ASP modcl
can be eithera sealar perfonmance index (i.e., security index), ora
linearized systery model (such @ distribution facton s), or a simplified
dynanmic model

The standard approach to the security assessment problenn is to per form
fitst the static security analysis and then the dynamic security analysis.
e static secur ity analysis evaluates the post contingent steady state of
t he system neplecting the transient behavior and any other time-
dependent variations due to changes in load-pener ation conditions. On
the other hand, the dynanvic security analysis evaluates the time -
dependent tansition from the pre-contingent to the post-continge nt state,
specifically, the stability of the system both from the small and large
pertibation point-of-views. Most of the present Encrgy Management
Systems (EMS) perform only the static secutity analysis. The dynamic
security analysis methods are not fully operations! and are cunently
being tested and evaluated. ln the following sections issues in static
secunity assesstnent and dynamic secusity assesste nt will be discussed
an d three case studies of application of newmal networks will be
presented.

2.1 Static Security 'roblem

In static sccurity analysis the powet system (S modeled by a set of
eqoality constraints representing the power balance a each bus (called
load flow equations) and a set Of inequalily constraints representing the
the nnal, voltage and generator VA limits. For anctwork with n busse s,
the load flow equations can be written in & peneral fonn as:

Real Power {

e 1, Y. G =0,

pi i:],.....ll (la)

Reactive Power: i = Q, - Qx.Y, () “O iz1,....n (Ib)

where Piand Q, m-m’»u-‘thc netreal and reactive power injection atbus i,
respectively; Pl Y Cr) and Q1. Y,C2) denote the 1eal and 1eaclive
power constiuption by the network which depend on the voltage vector
X (Val 0111 Y denotes the petwork parameters ; and Cx denotes the
contingency  Specifically:
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where 1 Vi (), complex voltage atbus i Yij the ij"‘ clement of the
bus acdimittance mabiix.

For secore operation, the solution 3 of Eq. (1) must satisfy the theunal or
line flov: Huits, reactive power Yimits, voltage limits and voltage diop
linits, vhich can be represented ina genceral form by

FARRS 'l(u‘(f)‘) < z7U *)

where the superscripts Tand U denote the lower and upper limits and
(1. C2) denotes the line flows, load bus voltages and generator vars.
The vector g in 2(00C2) emphasizes that each respouse variable 7;,
depends on the injections 1) (which 1ept esents all the independent
vanables, namely, e 1e @ and reactive load bus powers, ’q and Qy,
generator Ppand voltage nuapnitude Yy) via the solution of Eq.(1).

Rased on the above, the detection of inseciie contingencies is a
hypothe sis testing problen which detenmines whether m not the
constrants of (1) and (3) we satished for the present operating point, 1,
and the sel of postulsted contingencies {Cau 2 =1, .. . Nel,ie,,

Hj (Contingency insceme: at least one fimit violation): (W) ¢ SS

4
110 (Contingency secwe: no lunit violation): @) e 88
wheie SSis the set Of all [u, C3) satisfying Eqgs. (1) and (3). Since both
the POYCLjpjections, 1, and contingencices, Ca, ae uncertain beesuse of
such distutbances as uncontiolied loads, weather, component outages,
etc., the security assessment problent is probabilistic in natwe.

To oblsin an appraisal of the severity of each insecure contingency, there
are basic ally two (?) approaches: cither (i) aranking index is used to
evaluate the level of overload; o (ii) a set of discrete levels is used to
detennine the severity of the Limit violations, that is:

<z Gl s:1, 0 UN, (s
where supeiscripts 1 s and Us denote the lower and upper limit fur the
severity level s; Ngdenotes the hummberof severity levels at which
appropnate conechive sctions should be taken by system operators. 1y
most cases, this type of coarse severity level inforination is sufficient for
systen operators to initiste preventive of conrective actions, and the exact
post-cottingency value is only of secondary importance,

Tu swnary, the static secunity assessment problem implies solving Iig
(4) fuidl postulated contingencies, where each contingency represents
the ontage of either one or a set of lines and/or generators. This implies
the evaluation Of (4) forall combinations Of m failures out of nelements,
w hick is an exbemely Luge numiber. For large prover networks, even a
reduced sel Of contingencies cannot be treated in redl time and thesefore
variot g approximating inodels and methods have been developed. Sone
of these arc discussedneat

2.2. Static Secwr ity A nalysis: Conventional Techniques

To reduee the computational effort Of the security assessiment, presently,
most Energy Managenent Systems (EMS) usc one m more Securily
Assessment (SA) predictors (such as seunsitivity matrix, distribution
factors, fast decoupled load flows, or ¢! {onmance indicators) to reduce
the namber of eritical contingencies tobe calculated explicitly in real -
time  There ate many SA predictors available, each making cetain
assurplions ou the network or the operating states, in ordet to reduce the
computation effort in the evaluation. 'or example, the simplest scalar
SA predictors are of the scalar category having the peneral fona|[Fisch
and Chow, 1093):

PIQ.C,) - N wyhy 0.Cy) ©

wher ¢ Pstands for Performance Index; by (u. €1y is a real-vahlcd
func tion of (1.C) and {wy ) are positive weighting coefficients. The
notstion PI(u. Cy) cinphasizes that the 11 s eval yated a the operating
point, gy, and continpeney, Cy this Pl is used beth for insccure
contingency detection and severity ranking.  The comtingency
classification is petformed using the following criteric:



d; (Contingency insecore; at least one Ymit violation): PYu ) >, ‘TH

0)
dy (Contingency secure; no limit violation): PI(w.C) <TH
where TH is some specified or calenlated thieshold value. ‘Ibis aiiterion
is used for either thermal loading limit violation ctieck, or voltage limit
violation check, orvoltage stability checkwhienthe 1°1 in (7) represents
cither a loading index, or s vollage index, or a stability index,
respectivel y.

Although this type of SA predictor is computationally efficient, it may
not classify the contingencies correctly. The cumulative effect of the
approximations made hy the SA predictor and the uncertainties duc to the
exogenous factors (such @S uncontiollable load and weather conditions)
lead to two types Of ervors ill security classification: missed detection and
false alarmn. A missed detection iS one in which the assessment says that
the systemis secure, butin reality itisnot A false alanin is one in which

the assessinent says that the system is insecare While in reality no system
constraints have been violated. “The two ennors can be quantified using
bqs. (4) and (7), in terns of the probability of missed detection, Py,
and the probability of false alatm, Py, as follows:

P, Pridy| 11() (8a)
1, P{do | 11]) (8b)

A good security assessment "predictor” is therefore one that has the least
amount of false alarms and no missed detections [Fisc hl and Chow,
1993, Chow ef al., 1992). Therefore Eq.(8) gives the performance
index for evaluating any SA predictor, including a ANN-based SA
predictor,

2.3 Application of ANN 1o Static Secwrity Assessment

2.3.1. Type of ANN Architectire

2.3.1.1. Supervised Architectures

As seen in the references the most popularchoice of NN is the multi-
layered perceptron. ‘The reason for this is its ability to learn on-line. The
probletn IS the selection of the baining set and the selection of the inpots
A good method forreducing these is to usc some of the security
indicators presently caleulated by the EMS system as inputs to the ANN
This wiii makethe ANN act as a post-processor forinipraving the
accuracy of the securnity prediction,

Iu [Ei-Sharkawi er al., 1 990] oue specific contingency is fixed in
advance. The security boundaries are then trained witha M1.1" whichis
used as a decision ool in order to deterinine whetheran unknown
operating point lies inside the sccurity boundarics of the space of
injections with 1espect to this specific contingency.

The usc of the Hopfield network was exploitediu{Yaun et al., 1991] fos
the prediction of the class of violations for post-contingency bus
voltages, voltage drops and line flows, The ANN is thenused to
determine the severity of the violation and the liiting contingency
provoking this violation in the first place. "The Taststep is fonmulated as a
binary optimization problens. Only a subset of all contingencies is
chosen for this application. The architectore Of the Hopfield network is
used as an associative memory forthe retrieval of the limiting
contingencies under cerlain asswptions. Instead of calculating the
weights of the Hopfieldnet using the sum of outer products of the input
veclors, the weights are determined using linear programming whit h
puarantecs alatgerregion of convergence[bischl er &, 1990].

Bath MLP and Hopfield network therefore reduce the dimensionality of
the problem by reducing the nnmber of contingencies and often by
keeping insignificant power variables constant.

2.7, 1.2. Unsupervised and Hybrid Architectures

Unsupervised networks either reduce the dimension ality of the security
assessiment problem by reducing the dimension of the operating vector o
by quantizing the operating space. These techniques fal into the same
category of techniques as statistical featore detection algo rithms or
clustering techniques.

Vor security assessmentunsopervised nelworks often act as a data pre-
processor for a contingency analysis tool or a new al network. The

unsuper vised layer i< used for data reduction, the supervised layer for
data retueval, which usually includes the securily class the opcrating
state. Examples are discussed in [Weerasoori ya anti El-Sharkawi, 1991]
where th e Karbunen 1ot ve Frans formation is combinedwithaMI1 b, iu

[Sobajicer al ,1990) wheie A}< ' J-? like network IS combined wi th the
Fuuctional-Link Net, or in[Ranaweera and Karady, 1993] where tile
Radial Basis Functions Network consisting 0f a Kohonen layer for
quantizationand & lincar supervised layer.

in {Wecrasooriya and El-Sharkawi, 1991 for reduction of the dimension
of the input data vector is schieved with the principal component analysis
method (also called Kathunen-1 .oéve expansion).  This method
determines the eigenvectors corresponding, to the largest eigenvalues of
the auto-correlation mateix Of training vectors as its principal
comporients. The redoced training vectors are selected in direction of the
most dominant eigenved tors. Using this new set of reduced vectors, a
MIF is then trained to identify the security boundaries of the operating
space (so¢ comments orcference [El-Sharkawi et al.,*1990] above.)

Quantization of the oper ating space into prototype operating states has
been proposed fur the secun ity assessment of asmall space station
transmission systein in [Sobajic et al., 1990]). An unsupervised ART2-
fike ANN is used for the clustering of the input vectors. Yor this ANN
each cluster has an adaptively determined center, the. typical operating
state, &nd a radius which has 10 be determined in advance, usually
through experimentation. Feature retrieval, that is, the secunity slate of
cach typical operating scenanio isimplemented in a supervised manner
with the Functional 1 ink Net awchitecture,

A diffe; ent guantization approach foridentifying the security region is the
self-orpanizing featwre map presented in [Niebur and Germond, 1991]
and (K1 Sharkawi and Atteti, 1993]). Eachi newron has one weight vector
which represents the ce nter Of a class Of operating states. This weight
vectons interpreted as atypical operating state which in this application
is given by the line powers.  The size of each class depends on the
density of probability dish ibution of the training vectors.  The
unsupx rvised training process constructs intenmediate classes which do
NOot represent any training vector but may classify unknown system
states, thus genesahizing inforiation on known states. 111 addition to the
claw information, the 2-dimensional self -organizing map gives a 2-
dimen<ional representation of the m-dimensional operating space. The
operating space is presented on the map hy secure and insecure regions.
A mordetailed example i\ discussed in section 5.

2. .3.2. Choice of Inpui Data

A power systens state can be character ized eitherby the bus injections or
the bus voltages and the topology, or by the line power flows. For
training, aset of operating points isobtained either try file.asurcfllcflts or
by off-line load flow silations. ‘| he advantage of using bus injections
and line powers. is thatthey are available as measurements while bus
voltages must be estimated Line powers contain implicitinfonnmation 011
the topwlogy of the network and inciease the redundancy. Ou the othier
hand, the dimension of the injection vector i smaller than that of the line
powervector. Thisis snadvantage whendealing with real-we~llci power
systeins.

in addition to unsupervised techniques theft, arc a numbes of techniques
in the literature to reduce the input data, €.g., clustering about typical
operating points. A good approach is to use a bounding technique to
identify the criticalaeas of the power system and use that information to
reduce the input data input - Another method for selecting inputs is to use
the presently calcunlated security indicators by the EMS system as inputs
to the ANN. This will make the ANN act like an alarn processot for the
EMS system and thus perfonm on-line masking in order to reduce tile
number of false ataviis and misses.

2.3.... Training

In addition to coilver)ligiriinily trained newral networks the following
improvements have been proposed.

For ML.Ps partially trained with standard BP methods, reference [Oh et
al., 1 991] proposes o use quer y based learning, whet ¢ new Gaining
points are gencrated with an interval halving method in orderto get more
acew ate performance onasubset of data wheie the M1 .1 perfonmance is
stillinsufficient. This ethod works wells on noisy input data




in the 1 lapficld approach proposed in [Kam et al., 1990] the weights are

_determined with a linear programming approach instead of the sum of
outer products of training, vectors, in orderto assure a larger stability
margin for the convergence of the processing algorithm.

2..3.4. Peiformance

With the exception of [Oh, 1986), where an 196 hrrs system is studied,
al reviewed papers work with simulated data usually fiotw small
stand ardized power systems like the IEEE or CIGRE test systems.
However when working with simulated data ANN can only provide an
approximation of the supposedly exact noll-linear power system mode}
and for one specific operating point the prediction of abnormal conditions
is as nost as good as the ones done hy complete contingency anaysis.
Presented classification errors rank iu the order of Sto 20%.

FHowever more work needs to be done in order to prod uce better
performance. criteria A major step in this direction is proposed in [Yan
et d., 1994] and discussed iu section 3.4.

Let us now study two examples of a supervised and an unsupervised
neural net for static security assessment in more detail

3. A SUPERVISED ANN FOR POWER SYSTEM SECURITY
PREDICTION
In order 10 quantify the concept of secure and inscenre operating states let
us introduce 4 severity levels, Normal, Alert, Emergency | and
Emergency 2, asshown in Table 2.

Table 2: Severily Levels

Severlty Toevel Voltage [Line Flow ({n %[ Output
Drop (%) | of emp. rating) |Vattern
o Nonnal (N) <4 <R0% d, 0.0y
Hj @ Alert (A) 4.0-4.9 80%-99% dy: (0,1)
Hy : Emergency 1 (1i1){8.0-S.9 1009%-109% dy: (1,0)
Hy @ Bmergency A(E2)> 6.0 > 110% da:(1,1)

In the following sections wc will present the design of an ANN-based
SA piedictor which predicts if the power systemis in one of the these 4
seventylevels. A 17bus power system model shown in Figurel is
used fur illustiation of the design and evaluation of the ANN.

317 ANN A rchitecture

Forthe ANN architecture we selected amulti-layered perception shown
inVig 2. ‘The main reasons for choosing this ANN architectur ¢ over the
other ANN architectures isthat it issuitable for dealing with nonlinear
prablems, that effective training agorithm are available, rrnd that outputs
of the network can be quantified. The 3-lay ered percepti on consists of
the inputlayer, amiddle (hidden) layer, and an output layer discussed in
the next sections:

denotes Monitored line
denotes uc lines

Areal " T
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Figure 1. The 17 bus system one-line diagram
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Figure 2: The structure of the Newral Network

3.1.1. Inpudt Layer

A general guide for the inputlayer is that it should include as many
neurons as needed for the desired input information. However, as
indical ¢ in {Fischl and Chow, 1993], the system data selected for this
layer should show close correlation with the output data, Since our
objective isto study the thermal overload and voltage drop problems,
which arc usualy caused hy heavy power transfers, we use the area
transfer level (M W), the tic line flows (MW), the pre-contingency line
flows (MW) of theciitical line outages, and a set of line outa%e
distribution factors (DFAX) as data for the input layer. Based on the
above, theinputneuronsof our NN arc ordered as follows: the pre-
conting ency area transfer (M W), individua tie line flows (MW), pre -
contingency line flow (MW) of the. outage line, and the IWAX of the
critical contingencies (j:. u.). Thus, for our 17-bus system example with
1 areatransfer (between 2 aress), 6 tic. lines, 1 contingency outage (one
contingency a a time), and 6 monitored lines, 14 neurons are used in the
inpul [uyer.

3.1. 2 Midden Layer

To date, there is no exact guide. shout the choice of the number of hidden
layers and the number of neuronsin each layer, athough some work has
been done in Selecting the number of neurons in the hidden layer
[No vosel and King, 1991]. Too many neurons can lead to nicmoriz.alien
of the training sets withthe danger of losing the ANN’s ability to
generalize. On the other hand, a lack of neurons can inhibit appropriate
pattern classification 1o obtain an “optimum” number for the number of
neurons in the hidden layer, We varied the number from 20 to 60 and
compared the average total errors. For each change in the number of
hidden units, the NN was trained one hundred times and the average
enor for each case was note.d. Theresults indicate that the optimum
number of hidden neurons is somewhere around 40, as improvements in
the av erage en urs tend to saturate above this level, We chose 36 neurons
in ou final design for the hidden layer.

3.1..3, Output Layer

ANNS; are trained with hinary outputs of 1 and 0.1However, in redlity,
the outputs are closer to analog values in a range {0,1]. Acceptable
classifier results can be reset to 1 and O if the output values are >.8 and
<.2, respectively. The output layer provides the information on the
sever ity level of the limit violation. For our 17 htrs system, we used 2
neurons to represent the 4 levels of severity.

3.2 Training Set Sclection

Since training sets are the information required hy the. ANN to develop
its expertise, they need 10 be representative Of the different States. We
usc { Iff-line. load flow 1esults to fonn our training sets. Considering that
in the real world, the exactload-generation profile will differ because of
uncontrolled Joad, changing weather conditions, and other uncerltaintics,
we can assumc that the real load-peneration profiles to be stochastic and
the deterministic off-tine load flow results to represent the expected
values of the profiles. As we only use these expected values for our
taining data, the need anses for an approach to evaluate the effectiveness
of the NN as a means for class jfication.

Forour 17-bus system, the training set consists of off-line load flow
results from 9 cases representing area transfers from S22.$ MW to 6337



MW and the corresponding contingency cases. Five single line outages

are considered in thestudy. AS noted earlier, the back propagation
algorithm is used for the training.

3.3. A New Prediction Performance Measure

Recall that for the binary type of security assessiment (SA) of Eq.(4), the
effectiveness oOf the SA predictor can be evaluated in terms of Pg, and Py,
of Eq.(8).This also holds tnrc for ANN-based SA predictor. For the
severity evaluator which uses the many levels like those shown in Eq(5),
the evaluation process is more complicated because WC must perform
multi-hypotheses testing. Todo this we need to quantify the errors made
by the ANN if a classification d, is predicted by the ANN while the
severity levelllyistrue.The probability of such an occurrence is the
conditional probability that classification d, is made when the severity
levelis Hivi. e, Pr{d,iHy } Likewise, the probability of a corect
classification is Pr{d,tly} and the probability of severity level k is
Pr (Hy). If there are Ns severity levels in the classification, we can form
a sguare matrix of size Ns with the diagona terms representing the
correct classification and off-diagonal terms r((efresenting the
misclassification. Furthermore, if 11; Is defined in order of increasing
severity, the Pr{d;lHlk ) terms are associated with missed detection and
false darm, when s < k and s> K, respectively.

Idedlly, a perfect ANN predictor is rrnc whose Pr{d,lt1; ) = O when s#k.
Clearly this is highly unlikely. We therefore suggest the following
perforimance indices and criteriafor the evaluation of the perforinance of
ANN-based SA evaluator for security assessment [Yan ez al., 1994]:

(i) Local performance indices related to the accuracy of the severity level
“K” predictor, Pl

PR | i ) A . .
Pl = max{ Pr{dksi k), s7kL k=0, Ns-1 (%)

Ply is related to the maximum error of the predictor in correctly clas-
sifying the system severity at level “k.” For Urc ANN 10 be acceptable
for the severity level “k,” this Plx must be less than some threshold

valLa’, &l, asdetermined by the designer. We chose g) = 0.3.

, Pr(d 11
Pliny = max( T'Al'—{lalf(j"l—lkkl)» »s<k) ), k=0, ..... Ns-1 (9b)

Plyy isrelatedto the maximum error of missed detection d level “K.”
For the ANN to be acceptable for the severity level “k,” this PIy must

be less than some threshold value, €2, as determined by the designer.
Wc Chose €2=0.1.

(i) Globa performance indices related to missed detection, Y1y, rrnd
false darm, Plta

Ns-1 Ns-1

PL, =y ¥ Pr{ddl}Pr{l ) (10a)
s=0 k=s+1
Ns-1 Ns-1

(10b)

Plp = 3 ¥ Pr{ddH}Pr{H;)
k=0 s=k+1

S

Pl,, and Plg, arc related to the overal performance of the ANN in
missed detection and false alarm, respectively. In power system
security assessment, an acceptable “predictor” is therefore one that
?as the least z;mount of false alarms and nearly no missed detections
ie,Pl,=0).

If two ANN designs are to be compared, the more desirable one is the
ouc withmost of the PIk and Plimterms below the threshold and with
smaller P, and Plf,. We emphasize the word "most” here because
certain severity levels arc obviously of more concern than the others to
the system operators.

3,4, ANN Performance Evalu ation
The ANN is evaluate using the following uncertainties in power system

operation: The generation uncertainty at hus 1 Thas a normal distribution
with some mean and a variance of 1.0 p.u., and that the S single line

outages are equally likely with a 0.2 probability of occurrence.The
generation at bus 11was varied to create 3levels of area transfers,
namely high, medium and low transfers.

Based on the method descr ibed in [Fischl and Chow, 1993], the Monte-
Carlo simulation was used to obtain the conditional probability
Pi{ dglHly ) and the probability Pr{llk ). The results for the medium
t ansferlevel are summarized by the conditional probabilities and the Py
termsis shown in Table 3.

|"able 3: summary of the conditional probabilitics Pr{dsIHy ) and the probability of hypot

Pr{d ) Ho | MWy | 1 | Ny

do 0.999] 0.000 0.047| 0.000

dy 0.001 0.780| 0.007| 0.000

_ d; _» 10.000]0.220{0.783| 0.000
di__ |0.000] 0.000] 0.163|1.000
| He [y | M| oH,
[ Prily) 0.204 | 0,249 | 0124 | 0.423

Ideally the matrix shown in Table 3 should only have a diagonal of value
onc. This isthe case for the prediction of violations of severity level } I3
where 1o false alanins and (naturally) no more severe, missed violations
arc predicted by the ANN. Values below the diagonal of the matrix
shown in Table 3 indicate the probability of false alarms issued by the
ANN. Values above the diagona indicate misses. For example the
ANN p:edicts nonnal operation, i. €. do, instead of emergency 1, i. e.
Ho. with a probability of 0.047.

in gencsal an ANN with higher values for the Pr{d,li}x ) terms near the
diagonalis better than the. one with lower values. This is because the
value of the diagonal terms can be increased, if the “bandwidth” of the
severity level can be expanded to include that near diagona term as part
of the “’ expanded” diagonal term.

For the classification of 4 severity levels, the ideal case should be that
Pr{Hy ) = 1/4. 'Ihis is approximately the case, as shown in Table 4.

From the values in ‘I'able 3 and Eqgs. (9) and (10) wc can now calculate
the local and glohal performance indices Pli, PIi™, Ply,,, Plga, shown in

Table 4 Note that these values are smaller than the constraints €1 and €3

respectively and the prediction of the ANN is therefore sufficiently
accurate

Table 4 Summary of the localand global performance indices for the Severity Predictor 2

Local Performance lndex | Ho | Hy | Hy | Hy
Py 0.001 | 0282 ] 0208 | ©
PL™ . o Joosw| o
Global Pesfonmance Index
Pl, 0007
P« . » 005

$S Summary

The apjroach presented above uses a probabilistic test method based on

the classical decision theory. The performance indices can beused to
compaie the effectiveness of variations of ANN designs in minimizing
the probability of misclassification in the security assessment. The indi-
vidual conditional probability terms from the approach can also be used
to uncover arms where design OF training improvements can be made.

Based on the proposed miethod, agood ANN design should have the
following characteristics:



1) On the overal performance, the global indices Pig, is below a
pre-detennined threshold, P, =» O and

2)For each level, thelocal indices Plx and PI™are less than €; and
€2 respectively.

4. AN UNSUPERVISED ANN FOR STATIC SECURITY
CLASSIFICATION

10 illustrate the application of the Kohonen classifier for static security
assessment, we briefly present the application of the method for asimple
power system as discussed in [Niebur and Germond, 1991; 1992; El-
Sharkawi and Atteri, 1993]. The trained neural net provides a two-
dimensional representation of the high-dimensional operating space. The
evaluation of t|!IiS map reveals the significant power system features. The
terms Kohonen network and self-organi?.ing feature map are used as
synonyms throughout this section.

4.1. Study of a5 Bus -7 Line Power System

The Kohonen network is used 10 classify line loading patterns resulting
from single and double contingencies for a 5 bus -7 line power system
represented in Figure 3. The input vector representing the operating state
isdefined by 7 complex components Or, alternately, 14 real components,
the 7 active andreactive line power flows. For brevity, the lines in
Figure 3 will be designated by the first letter of the busses connected by
thisline, e. g.1.ine North-1 ake is called N-1,:

One load and generation scenario was defined as the base case. The 46
training vectors were obtained by of (-line load-flow simulations of all n-
1 and n-2 contingencies using the non-linear power system model.
‘These 46 vectors can also be viewed as 46 different line loading patterns
corresponding 1046 different power system topologies.

‘Ihe information on the bus power injections is implicitly present in the
input vector since the power on the lines connecting to the same bus will

d up to the bus power. ‘Ibis means that the input vectors lic on a
manifold of the vector space. Therefore the actua dimension rrf the
operating space is smaller than twice the number of lines.

The information 00 the bus voltage is implicitly present in the input
vectors as armn-linear dependence (the load flow equation). The.sc can
he looked up in the data base for the trained cases.

Figs.3, 4 and 5 show the base case, N-1. contingency and N-S
contingency for the 5-bus system respectively. Only the active power
flow has beenreported in the network presentation. The operating
vectors include active and reactive powers.

Operaling vectot

130 MW 4SMW 40 MW T AT MW
Gen01 :2; NS ;g MMVWN
4 30 MVA:

Narth sSE 55 Mw
6 9 MVAr

7SM 25 MW
90 MW 8 S MVAS

98L 25 MW
to 6 MVAr

South MM 19MW
. 12 7 MVA

Gen02 13ME  6MW
OMW 20 MW 60 MW 14 -3 MVA]

Figure 3: The power flow of the base case. The darkness of aline's shading increases
withits 10a0.

Bus North serves as the slack bus. Bus South is a voltage regulated bus
of type PV and all other bosses arc load busses of type PQ.

6

Iperating vect
1MW 45 MW 40 MW T
Gen(il 2 0OMVAI
3 N-S 133 MW
North 4 -40 MVA
SSE  63MW
6 t0 MVA:
7 S-M 43 MW
9sl.  43MW
0 8 MVA
South LM 3 Mw
X 2 7 MVA
Gerd2 IME  -tMW
40 MW 20 MW oMW i 3 MVA

Figure 4: The power flow fux the contingency of line North-Lake. A linc outage is
repeescuted by a dotied line, an overloaded line by a black line.

Operating vector
110 MW 45 MW 40 MW ‘ L
. 4

GenOl O ) b tare ‘ Main % N-S Owwh
4 0 MVAr

North 1 58B 40 Mw
¥ 6 18 MVAr

Vil N 22 MW 1SM -4 MW
oMW R ‘ ) r § 22 MVAr

] sl AMW 081 -15MW
ey 0 30 MVAr

South ! AOMW LM 67MW
Gen?2 Bl g ME ;g M"\'“"’N
40 MW 20 MW 0 MW 14 -11 MVAr

Figure 5 The powes flow for the cantingency of Jine North-South.

The base case and contingencies lie in different manifolds of the.
operating spare, Assuming a maximal tolerated active power of 100 MW
for each line, N-S contingencies result in N-1. overloads and vice versa.
4.2. Training of the Feature Map

A 7x7 self-organi?.ing map hasbeen trained with 46 single, double and
mixed contingency operating states which were presented several times
in random order. After about 4000 steps of learning, the network is
aready organized,i. e.the weight vectors have converged to an
equilitirium point of the neura system.

4.3. Evaluation of the Cluster Map for Training and lest Data

In order to evaluate the classification results, a set of test vectors has
been gencratedat @ “reasonable” distance from the 46 trained vectors
through uniform variation of load and generation at 90%, 95%, 105%,
and 11 O% of the total load of the base case. The claim of a reasonable
distance is justified hy the practical consideration that load and generation
for a network usually vary around a scheduled case. 184 untrained
single and double contingencies were presented to the Kohonen
classifier. Figure 6 shows the. cluster map for the classification of the

184 untrained vectors.
6: N-L &5-M; %0%,
95%, 105% & 110&

28:N-S & l,M;@\ 7\
@(kn S, 90%

i
42: N-S & Geir; 95%,
100%, 105% & 110%

Figure 6: Clustes map of the classification of 180 test vectors for the 5-bus 7-line
system indheating contingencies classified by selected neurons

47 & 48: All islanding



Neurons shaded with the same pattern classify at least one test case.
‘They belong to the same cluster and classify the same type of security
violation, for example neuron 42 and neighbors classify N-S
contingencies resulting in N-1. overloads. Neurons marked by hold
circles classify at least one training Case. Neurons with empty cases do
not classify neither training nor the test vectors. That means their weight
vector has never hcen chosen as the closest vector to any of the training
or test vectors.

Several different clusters can be distinguished. Normally loaded
situations arc classified by neuron 33 and its neighbors. Neurons in the
upper right corner, i.e. neuron 6 and its neighbors classify N-I.
contingencies resulting in N-S overloads. Neurons in the lower left
corner, i.e. neuron 42 and its neighbors classify N-S contingencies
resulting in N-1. overloads. Islanding is classified by neuron 46 and 47.
The set of neurons classifying test cases includes the set of those
classifying training alone. Note that operating in different subspaces, i.
e. N-1. and N-S contingencies arc classified by neurons situated far away
from each ofher on the map.

4.4. Classification Error for the Test Set

For the 184 untrained cases the total error rate, including fake alarms and
misclassifications, is about 8.4% whereas the misclassification rate alone
is only 4.4%. All neurons involved in misclassification indicate a
security violation for at least ouc component and therefore already
present unsafe operating points. If we are only interested in unsafe
versus safe cases, there would not be a single misclassification in this
test set, because the most significant overload situation is dways detected
correctly. The wrong classification may however occur for a less
significant overload of another line. ‘The misclassifications never declare
an unsafe state to be safe, hut the magnitude of the apparent power of
one line would be wrongly predicted as not overloaded in 4.4% of the
test cases.

A second test Set was generated, taking 20 base cases with loads varying
individually in the range from 75% to 125% of the trained base case.
Simulation of al single and double contingencies thus yields shout 900
test vectors. The classification error for false alarmsisin the order of
7.43%, the misclassification error is 3.35%. Once again in 2.4 % of the
misses occur for operating states involving two or more overloads where
the severe overload of aline is correctly predicted and the second less
severe overload is missed. Only in 0.7% of al cases the ANN predicts
normal operating for all lines thus missing a present overload. The
significant percentage of the false aarms occurs at border neurons of
unsafe clusters.

45. Interpretation of the Weights

Each neuron of the Kohonen map can he associated with its weight
vector which represents a prototype of a class of input vectors.
However, some ncurons hever classify any training vector. We
therefore need a procedure to establish the security class represented by
these weight vectors withoot any a-priori information on the test vectors
which might be classified by these neurons.

The weight vectors themselves are calculated as a weighted sum of &
certain number of input vectors which form a class. Therefore, with our
choice of variables for the components of the input vectors, each compo
nent of aweight vector represents either an active or areactive line powes
flow. For example, the first component of every weightvector
corresponds 10 the active power in the branch North-1 ake.

In order to analyze the weight vectors we do nor need any information on
the class of input vectors. The features of these classes are directly
represented Dy the values of the weight vectors.

In Table 5, three out of the 49 weight vectors are represented. Neurons
5 and 6 arc neighbors in the feature map (see Figure 6) and the weight
vectors arc close to each other with respect to the Euclidean distance.
Note that weight vector S represents the single outage of N-I., whereas
vector 6 represents the double outage of N-I. and S-M. Neuron 45 is
situated relatively far away from neurons S and 6 and represents a
contingency of line N-Sresulting irr an overload of N-1..

Table 5. Weight vectors Of neuron S, 6 aad 45.

Line Waight vector Of Welght vector of Welght vector of
neuron 5 {MVA) neuron 6 [MVA} neuron 45 (MVA)

N L: 0.0+ 3 0.0 0.04 7 0.0 369 . 3 4.5

N St 138.4 — 342.1 135.3 - 3415 0.0 + 3 0.0

SE: 62.2 + 310.1 79.6 - J17.4 40.0 + 516.8

3id: 427 +36.2 0.0+ 3 0.0 -2.4 4522, s

5L “2+44997 7.8+ 318B.9 -13.4 + §28.2

1M: 21 -~35 .2 23.5-j24 64.4 - §31.0

M B: -0.6 - § 2.1 _-16.6- 35.8 21.1 - $10.7

Letus now consider the third component of all weight vectors,
comresponding to the active power of line N-S, i. c. the rest part of the
complex number in the highlighted line in Table 5. This component is
represented for al 49 neurons in a three-dimensional representation on
the left hand side of Figure 7. The 49 neurons are distributed
equidistantly on the vertices of the square-lattice in the xy plane (some of
the border neurons have been labeled with their number), and the "z"-
dimension represents the third component of the weight vectors. Those
neurons in which this value (i. e. the active power on line N-S) exceeds
the maximally allowed value are marked hy dark circles, and neurons
with ve; y wesk |oads (usvally corresponding to outages) are marked by
white circles.

Itis seen in this representation that the N-S component of neurons 28,
35, 42 to 45 and 48 is extremely small, Since input vectors
corresponding to N-S outages will have the corresponding vector
component equal to zera, the neurons mentioned above will likely be
close to these cases and therefore classify N-S contingencies. We have
aready seen the case of neuron 4S which indeed classifies the single
outage N-S.

At Powet 3t L North South

Figure 7: Three-ditucnsional view' of the 49 weight veclor components corresponding
to the a live powes flow of 1 me Norttr South and corresponding flat component map.

If we sssume again an active power limit of 100 MW for line N-S, the
compa ison of this limitto the corresponding weight vector component
of neuron i indicates whether neuron i classifies system states that arc
likely to violate this limit. In the discussed example, neurons 1-6,8-13
and 16-18 have N-S components exceeding the given limit and will most
likely classify cases tori esponding to N-S overloads. We report the

components indicating overloads on the two-dimensional grid of our 7x7
feature map to the rig.ht-hand-side of Figure 5, thus establishing a
component map for line N-S. Also in this representation, overloads are
marked by dark shading of the corresponding neurons (we do not mark
outages explicitly).

We proceed in the same manner with the other 13 components of the
weight vectors. By analyzing these component maps, the properties of
neurons not classifying any of the training vectors can he determined.
For example neurons 3,11, 12 and 13 will aso classify overloads of
North-South, they need not classify any of the training vectors. We will
call this the generalization capability of the feature map.

4.6. The Cluster Map - An Assembly of the Component Maps

This synthetic representation of the properties of the weight vectors is
usually called cluster map. It corresponds to the top layer in Figure 8
which illustrates schematically how the cluster map is assembled.

The top map is the combination of alllower (component) maps. For
each weight vector component there is one component map, only four of
t h em being shown.




Synthesis of the regions where at
Ieast one Of the security constraints
is violated

(I

Component map of corponent N-L of
the weight vectors, representing the
tine fiow in line N-1.

Component map representing the
sctive power Joad at bus Nosth

Comgponent map representing
rtrr voltage atbus Eim
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@ @ e Region of the map where line power flows exceed the security limit

o Region of the map with unsupplied load at a bus

@ Region Of the map where & voltage limiit is violated

D © O Region of the map where line power limits and bus voltage {iits are violatec
o Acoeptable operating points with respect to the secur ity limit

Figure 6: Generation of the cluster map.

The cluster map is generated as a superposition of the component maj:s
established from the analysis of the weight vectors (only four of the

components maps are shown schematically). The 7x7 neurons on the
component maps are situated as usual on the crossings of the horizontal
and vertical lines. The qualitative information of secure and insecure
neurons can be coded as patterus or colors.

For the cluster map, wc have used exclusively information from the
weight vectors. We would like to emphasize, that it is one of the. crucial
advantages of the self -organizing festure 1nap technique that a-prioti
information on the test vectors is 001 necessary to classify the system
states. The unsupervised learning algorithm reveals the underlying
structure of the input data without requiring any explicit knowledge about
the systent.

4.7. Summary

The classification of power system slates with the self-organizing feature
map can be summarizedas follows:

1)  Theneura net istrained off-line with one or severa base cases and
the related n-1or n-2 contingencies. These contingencies can
equally be regarded as different topologies of the power system.

2)  Anunknown operating state is presented in real time to the neural
net. The neural net considers this state as a base case and will
classify this case by a prototype state, e. g. weight vector 33.

3)  Knowing that e. & all contingency of line N-S of the vectors of
class 33 will lead to an overload in line N-I. the neura net draws
similar conclusions for al n-1or n-2 contingencies of the unknown
operating state. If the. unknown operating state corresponds  al-
ready to a different topology obtained from the base case hy taking
onc line out, then conclusions can be drawn for al single contin-
gencies of the case providedall n-2 contingencies have been
trained.

4)  If during power system operation the classification oOf the operating
state moves from neuron 33 over to neuron 25, the neural net

fu: ther indicates that the trajectory of the operating point moves
towards an overload situation concerning line N-Sor line S-E.

There are several advantages to this approach:

a) There isno need torun a contingency analysis in rea time and
therefore the problem of combinatorial explosion can be avoided
during operation.

h) The classification of acaseis cxlrcme)y fast, since it only requires
the evaluation of alimited number of distances.

c) lwnaddition to the classification of the present state, the trgjectory of
the operating states predicts the overall tendency for future operat-
ing states allowing early preventive action to be taken.

d) Intraditiona contral centers, the operating situation is presented
either alphanumerically or by colored graphs of the power system,
often containing hundreds of distinct, differently colored lines.
I be relation between a contingency in line a and an overload in Line
b can neither be directly concluded from the graph nor from the
numbers although experienced operators would know thcm for the
most common operating situations. The two-dimensional map re-
groups these relations into distinct security areas thus exhibiting the
qualitative behavior of the power system even for unusual operat-
ing gt:]ations These maps can be ideally displayed on a color
terminal.

5. ARTIFICIAL NEURAL NETWORKS IN DSA
5.1. Overview of ANN for Dynamic Security Assessment

Although dynamic security isdefined as security with respect to transient
stability, there are many instances where it has been used with dynamic
stability connotations. Dynamic stability of a power system is
determined by the eigenvalues of the linearized state space model of the
system generators. Presence of eigenvalues with positive real
components indicate dynamic instability. However, eigenvalues are
susceptible to changes in operating point and topology of the power
system and have to be frequently re-evaluated at significant
computational cost. in [111 -Sharkawi et al., 1989], a neural network
approach to predict the dynamic stability status of a power system was
proposed. A |ayered perceptron was trained'to learn the implicit mapping
between varying system operating states such as real and reactive
injections at selected buses and the corresponding dynamic security
status. The trained nevral network was used to create 2-dimensional
security contours With respect to the selected system attributes.

A similar concept but for a Kohonen net is proposed in {Mori et al.,
199 1]. The inputs to the neural network were the d-g axis voltages,
rotor angles and speeds of the individual generators. The output was a
900 neuron (30x30) 2-dimensional grid. This grid was divided into 10
diffes ent areas based on the magnitude of the largest eigenvalue within
the uuit circle. Hence the output was indicative of the degree of security
rather than a binary security index 88 with [FiSChl et aI., 1989]‘

The concept of critical clearing time (CCT) is also a measure of dynamic
secus ity of a power system. However, it is a complex function of the
power system topology, load level, and fault characteristic. The
calculation of CCT involves considerable computational cost.In
{Sobajic and Pao, 1989], a technique was proposed where a layered
perceptron was trained to predict the CCT for a fault based on the pre-
fault system attributes, such as the acceleration powers and the relative
load angles of individual generators, The training patterns were
generated for different load levels and base topologies. The
corresponding CCT's were derived by numerical integration of the
system state equations. It was proved that the neural network can
generalize its knowledge to previously unencountered system topologies
and load levels and predict the CCT with reasonable accuracy. In a
follow up [Pan and Sobajic, 1991], a combined unsupervised/supervised
learning algorithm was proposed to solve the same problem. The input
data was pre-processed using an unsupervised clustering algorithm in
order to enhance the accuracy of the supervised learning algorithm. A
sepurate set of features were selected for each cluster based on the
covariance matrix.

It was pointed out in {Kumar et al., 1991; CEl, 1994] that most of the
research done up to date in the area of dynamic security were conceptual
investigations and as such, they had impressive results. It was noted
however, that considerable progress has to be made before these
techniques are applicable in a redistic on-line security assessment



package. The major obstacles arc the dimensionality and the
combinatorial complexity of a real power system. Kumar, et al., [ 1991]
proposed a hybrid expert system/neural network approach which can
effectively utilize the existing high level knowledge of the system
operators while training neural networks to execute the more vncertain
lower level tasks.

5,2. Promising are as

The prime candidates for application of neural networks are in the
subproblems of DSA which require generalization of the results of cases
studied by engineers, to the many potential situations that cannot be
studied. Some of the obvious candidate subproblems arc in [Kumar et
al.,1991; CEI 1994]:

in contingency selection, 10 identify potentially severe outages
based on the current operating state.

in contingency screening, to identify definitely harmless and
potentially harmful contingencies.

in determining conditions for termination of time domain
simulations.

in determining pre-contingency transfer limits

6. CONTINGENCY SCREENING BY L AYERED PERCEPTRONS

Contingency screening is afast approximate method of determining,
whether a contingency has the potential to cause security violations. The
proposed mrslti-layered contingency screening approach is given in
Figure 9. Screens at each level have significantly different capabilities
and accuracy in detecting contingencies with potentia violations. Neural
networks arc selected for one level of screening. Layered perceptrons are
trained to identify dynamic security with respect te aselected set of
contingencies based on pre/post contingency system indices. The
approach has a slrikinrgsihliiarily to that for static security. However
some real issues with respect "to dimensional and combinatorial
complexity need tobe addressed.

Each pre-contingency configuration gives rise to many post-
contingency configurations.

Generation schedule of the power system is a function of many
factors that may not all be identified.

The number of possible system configurationsis large.

The number of available training cases arerelatively small.

‘The first issue is unique to dynamic security. For example, the same pre-
contingency power system can be either secure or insecure depending on
how soon the fault is cleared. Therefore, security cannot be estimated
based solely on pm-fault features. One way to deal with the problemisto
derive a set of indices (features) which describe the condition of the
power system immediately following fault clearing, in terms of the pre-
contingency steady state. The elapsed time prior to fault clearance will he
implicitly captured through deviation of the indices. Moreover, the
features should not be too sensitive to the system configuration and then
have the neural network generalize among the unseen topologies.
Following arc some of the suggested guide lines for generating features
for security studies [Kumar et al., 1991; CE11994}:

Calculated for each component of the system.

Raised t0 a high degree t0 accentuate the difference between small
and large values and thus reduce the effect of masking.

Normalized to make them configuration independent and to avoid
nuinerical overflow problems.

Averaged out over the relevant components.

A set of high level features defined under the above guidelines are
described below [Kumar et al., 1991; CEI 1994].

The risk to the system security through increased generation and lower
system voltages are captured by,

generator real power output (normalized by inertia)
generator reactive power output (normalized by inertia)
generator apparent power (normalized by inertia)
generator bus voltage

generator rotor angle with respect to center of inertia
generator (2 QviarVP

The effects of increased line loads. the vulnerability of the “down
stream’ system scan from the generator are captured by at tributes,

line sending end real power (normalized tsy line reactance)

line sending end reactive power (iormalized by line. reactance)
- hoc phase angle

line sending end (Q - QuiasYP

The effects of low bus voltages, high bus loads, high power transfer
across pre-specified interfaces and overall system loading are captured
through attributes,

bus load (normalized by the line admittance)

- bus voltage
real power flow in pre-specified interfaces (normalized by the
admittance)
1cactive power flow in pre-specified interfaces (normalized by the
admittance)
system reactive power generation (normalized by total real power)

- system stress

In addition, the following variables describing the transient conditions
immediately following fault clearance may also be needed.

change in speed of generator

change in kinetic energy of generator
acceleration of generator

approximate potential energy of generator
approximate ener gy ratio

speed of system center of inertia

Since the indices are averaged over the relevant components, the number
of indices are independent of the size of the power system. This is
specialty useful in dealing with large scale power systems.
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7. CASESTUDY

EPRI, ABB-Systems Control and the University of Washington
cooperated in afcasibility study on the applicability of NN to the security
assessment [Kumar et al., 1991; CEI 1994]. In this study, the dynamic
security of an equwalent test system of Ontario-l Iydro(OH) is
investigated under 6 specified faults using layered perceptrons. Training
datafor combinations of 7 different load levels and 9 different clearing
times totaling 63 (9x7) patterns, are given under each fault. The
corresponding dynamic security flag (secure=0, insecure=1) is aso
given. The security contours of each contingency as a function of load
level and clearing time arc given in Figure 10. The training data were
generated on transient analysis programs of ABB Inc. The preliminary
study was for security classification under two conditions: with and
witbout the knowledge of Contingency.

7.1 Contingency and Topology Specific Class ification Without
Feature Extraction

In this study, 6 individual neural networks were trained to assess
dynamic security under 6 contingencies. 63 patterns characterizing each
contingenc y were derived from the same base topology of the steady
state power system. Each pattern contains 28 attributes derived from the
previously specified list of features which were measured at the point of
fault clearing.

Each data set was normalized between O and 1, and randomly shuffled to
remove any bias towards the selection of training and testing data. Table
6 gives the common architecture and learning parameters of the
contingency specific neural networks.

‘f bic 6 Neural NEtWOrk Parameters

Architecture l.caming statistics

input dimension = 28 L-arming step =0.05
output dimension = momentum =0.05
1 training patierns = 50
hidden layers = ] testing patterns = 13
hiddes neurons = 8 iteration sweeps = 1000

T'able 7 gives the classification performance on the training and testing
sets under each contingency. For cacb neural network, the actual ratio of
secure and insecure patterns for the correspondlng training and testing
sets are given. The classification accuracy is given by the number of false
alarms and misses.

Table 7 Classification Results

Training Set Testing Set
Contingency  secure/insecure  alarms/misses  secure/insecure alarm.dmiwcs
1 g 0/0 9/4 0/1
2 24126 0/0 8/5 0/0
3 12/38 Oom 5/8 0/0
4 50/() 0/0 13m 010
M) 44/6 0/0 1211 0/0
6 45/5 0/0 1172 0/0

A graphical interpretation of the neural network output under each
contingency is given in Figure 10. Contingency 4 is omitted since it has
No insecurities as seen from Table 7. A mesh plot of the neural network
output surface for the 63 patterns is given on the left. On the right, the
contour of the neuralnetwork output threshold (0.5) (—) is
superimposed on the actua securefinsecure corridor (-----) of the
corresponding contingency over all combinations of load levels and
clearing times.

It IS interesting o note that none of the contingencies had false alarms.
1lowever, under contingency 1, the neural net threshold intruded into the
insecure region as seen in Figure 10 () on the next page. This tends to
produce false dismissals which was confirmed by the classification
performance in Table 7.
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7.2 Topology Specific Classifications with Feature Selection
Following the success of the previous test, an enhanced set of 52
features were used to describe the same fault phenomena. These new
features were introduced to unmask the sign of the previous indices
which disappeared when raised to a higher degree as explained earlier.
The enhanced features would enable the use of a single neural network to
classify security under all contingencies. All other dynamics remained thie
same.

Two neural networks were trained for security classification: the first
used all S2 attributes as inputs. and the second used 24 features sel ected
through the feature extraction algorithm described earlier. The training
and testing data sets for both neural networks had the same consistency.
They were obtained by randomly shuffling the initial 378 patterns 15256
times. 'Ihe first 300 patterns were used for training and the remaining 78
patterns for testing. The random shuffling was done to ensure that data
corresponding to all contingencies, load levels, and clearing times were
randomly alocated to the training and testing sets. Table 8 presents the
training and testing statistics for the two neural networks

Tabk 8 Neural Network Training and Testing Data

Neural netwaork without with
training and testing feature feature
sclection sclection
Architecture
inputs 52 24
outputs 1 1
hidden layers 1 1
hidden neurons 3 3
I carning,
Jeaming step 0.05 ,0.05
momentu m 0.05 0.05
iterations 2700 3600
CPU time (sec) 88.38 42.9
Perormiance
training, data 300 300
sevane data 210 210
insecure data 90 90
false alanns 2 t
false dismissal 2 0
training error 1.754 1.757
testing data 78 78
secure data 56 56
inserure data 22 22
false alarms 1 1
false dismissal 0 0
testing erro 0.561 0.557

For comparison, the same training parameters were used in both cases.
Both neural networks were trained until the same training error (E) was
obtained. The variation of training error E vs. the number of iterations
were plotted in Figure 11. It isinteresting to note that the neural network
trained with selected features took more iterations to achieve a compara-
ble ex ror. however, due to ifs compact architecture, the CPU time used
during training was lower. Moreover, as seen from Table 8, improved
overall classification performance on the training and testing sets indicate
a superior generalization capability through the use of feature selection.

Figure 12 presents a contour plot of the output surface of the neural
network trained With the 24 selected features, with respect to tbc 5 non-
trivial contingencies. 1hey were generated as described under Figure 10.
Besides the 0.5threshold contour, those comresponding to 0.4 and 0.6
were also plotted in order to investigate the degree of confidence of the
neural network classifications.

1t can be seen from the 5 contour plots that neural network displays the
best performance when classifying contingencies 3 and 5. In this case,
both 0.4 and 0.6 contours arc within the security corridor.
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Under contingencies 1 and 2, the classifier is biased towards producing
fase darms. However, the given data set is classified free of errors.
Both false darms that are encountered in ‘I’able & seem to occur under
contingency 6. however, the fact that there are no false dismissals is an
encouraging sign of the neura network’s ability to generalize among
contingencies.

8. CONCLUSION

8.1 Summary

Security assessment is formulated as a classification pr(_lblcm where
trained ANNs arc used as classfiers. The motivation is to usc the
concepts of pattern recognition to improve the speed of security
assessment computations.

Most artificial neural net approaches solveamore global task then
classjca] security assessment in which the contingency classification,
ranking and evacuation are the primary problems. They attempt to find a
global description of the operating space (or parts of it) and its security
boundaries. As statistical tools they depend heavily on good statistical
representation of the operating space.’

Since the security analysis problem is of high dimensions, most ANN
methods suffer from the combinatorial explosion of the number of
contingencies in the same way as classical methods. However, because
of their parallel computational approach this problem is more severe, and
some type of partitioning and sequencing needs to be made. When
comparing supervised and unsupervised ANNSs, wc note that they have
different objectives. Unsupervised approaches usually divide the
operating space into classes of operating points, thus pre-processing the
data set by reducing it into a limited number of typica cases. These
cases can then hc evaluated either with standard methods or with



supervised learmning. Supervised approaches attempt to approximate the
security boundaries of the operating space, thus memorizing data points
of ahigh-d imensional function and interpolating between them.

For high-dimensional operating spaces, it is not feasible to generate a
sufficiently large, statistically significant training set for the complete set
of operating points. In daily operation, only a limited number of
operati n% situations are planned. The set of training vectors willbe
generated bytraining'with ‘input vectors selected randomly from the
region of the scheduled operating points. If these operating points
change significantly, some types of neural networks have to be trained
again, even daily, if necessary. (Of course, the weight vectors of trained
networks can be stored off-line and used again for similar operating
conditions.) In contrast to many other neural net applications, training
timeis acrucial issue in power system security assessment. An efficient
implementation of Kohonen networks on specialized hardware is
discussed in [Comuet al, 1994].

8.2 Challenges

When NN is used, the investigated issues should include:

Problem partitioning that incorporate neural networks to expedite
security calculations while preserving the advantages of
conventional problem solving paradigms.

Oracle and support software which can extract features from the
pre/post-contingency  power system information with respect to
different systems, topologies, and configurations.

Stetistical feature selection techniques to reduce the dimensionality
of the input data while preserving classification accuracy. This
would complement the higher level feature selection that may have
aready been perfonmed through expert k nowledge.

Capability of neural networks to correctly classify and generalize
security among correlated and uncorrelated loading. conditions. This
is contrary to a conforming load model that has been used in most
literature to date.

Selection of neural network architecture and learning agorithm,
such as net size, learning step, number of training patterns, and
iterations, based on the distinctive features of the problem such as
size of power system, nature of contingency, and number of
violations.

Ability of the NN to generalize among different contingencies and
operating.

Ability of the NN to recognize the secure region in the operational
scram.. In other words, the NN should be able to perform a contour
tracking of the secure region.

Future research needs to focus more on adaptive learning techniques and
ancillary techniques, as discussed in [El-Sharkawi, 1995], in order to
break down the dimensionality of the assessment task.

Finally, one needs 1o develop ANN design procedures which will opti-

mize the performance of the ANN in terms of the security assessment

gmblcm, i.e., minimize the performance indices suggested in Section
5.
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